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C A L C U L A T I O N  O F  T H E R M A L  C O N D U C T I V I T I E S  O F  

T E R N A R Y  G A S  M I X T U R E S  
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A semi-empirical method is suggested for calculating the thermal conductivity of a gas mixture by using the 
first-order Padd approximant. Examples are provided to show high accuracy of the method and the adequacy 

of fitting parameters that are determined from experimental data in a wide temperature range. The possibility 
of using the thermal conductivities of the binary gas mixtures constituting the ternary mixture is investigated. 

Introduction. The requirements of intensification and control of technological processes demand reliable 

transfer coefficients. At present reliable data on transfer coefficients in gas mixtures can be obtained mainly from 

specialized thermophysical experiments. Available calculation methods based both on rigorous relations of the 

kinetic theory of gases [1] and on semi-empirical relations [2-4] often fail to provide the accuracy required in 

practice. An experimental study of transport properties of gaseous mixtures is expensive and requires much time 

since these properties, as a rule, must be known in a rather wide range of parameters (composition and 

temperature). As our experience shows, it is difficult to find data on transfer coefficients of a particular ternary 

mixture because of the large number of available mixtures. This requires derivation of new semi-empirical relations 

for determining with an accuracy approaching the experimental one transfer coefficients of gaseous mixtures that 

"take into account, as much as possible, a priori information on mixture composition and the transfer coefficients of 

the components. 

We suggest a semi-empirical formula for calculation of transfer coefficients that is based on unique 

properties of Pad~ approximants and whose accuracy is close to the experimental one. Unlike conventional 

calculation schemes, the suggested formula may be used for a minimum number (no more than two) of experimental 

values of the transfer coefficients of a considered mixture obtained at different concentrations of its components. 

This allows not only substantial improvement in the accuracy of the values obtained but also considerable reduction 

in the volume of experimental investigations on transfer coefficients of gaseous mixtures. It is pertinent to note that 

this method has been successfully employed to describe the concentration dependence of viscosity coefficients and 

thermal conductivities of binary gas mixtures in a sufficiently wide temperature range [5 ]. 

Mathematical Model. We shall assume that the transfer coefficient of a ternary mixture at temperature T 

is completely specified by the expression 

2 = F 1 (2i, x ,  y),  (1) 

where 2i is the transfer coefficient of the i-th gas constituting a gaseous mixture; F 1 is an unknown function that 

we seek to determine from a priori and experimental information; x, y, and z are the numerical molecular 

concentrations of the first, second, and third gas constituting a ternary mixture, respectively. Since the condition 

x + y + z = l ,  

is fulfilled, the variable z does not enter the arguments in the right-hand side of (1). Proceeding from dimensional 

theory [6 ] we may reduce expression (1) to the form 
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)1 (X, y) = )13F2 ()11/)13 , )12/23, x ,  y),  (2) 

where F2 is a dimensionless function of its dimensionless arguments. Representing the dependence of F2 on its 

arguments in the form of a [1/1 ] Pad6 approximant in x and y [7 ], we arrive at the following expression: 

A 0 + AlX + A2y 
)1(x, y) =)13 1 + B l x + B 2 Y  " 

(3) 

To determine the unknown coefficients A1, A2, A3, B1, and B2, we use natural conditions, namely: 

a t x =  1 

A (1, 0) =)11; (4) 

a t y  = 1 

)1 (o ,  1) = )12 (s) 

and, finally, at x -- y = 0 

)1 (0 ,  o) = )13. ~6) 

From conditions (4)-(6) it follows that 

A 0 =  1, A 1 =) l l /2  3(1 + B 1 ) -  1, A 2=)12/)13(1 + B 2 ) -  1. (7) 

We now may write expression (3) with account for (7) as 

(1 -- X -- y) + )11/)13 (1 + B1) x + 22/ t  3 ( i  + B2) y 
;t ( x ,  y) = 2 3 1 + BlX + B2Y 

(8) 

To determine B 1 and B2, we need, as was mentioned in the introduction, additional information. Let two 

experimental values of the transfer coefficient 2* and 2** obtained for different compositions of a ternary mixture 

be available. Then successive substitution of these data into (8) yields a linear system of two equations for B1 and 

B2. Solving it, we easily determine these parameters. As is shown ia [5 ], we need only one experimental transfer 

coefficient for a binary mixture. In the case of a large number of experimental values, the least-squares method 

may be used in view of the linearity of the system of equations. 

We shall illustrate the suggested method by calculating the thermal conductivities of He-Ar-Xe and Ne- 

Ar-Kr mixtures, for which sufficiently detailed experimental data are available, which allows both the calculation 

of concentration dependences and the comparison of calculated and experimental results. Table 1 lists thermal 

conductivity values calculated by (8) for the He-Ar-Xe mixture with B! = 3.276, B2 = 2.288. For their determination, 

use was made of two experimental values from [8 ] obtained at 38~ As is seen, the deviation of the calculated 

values from the experimental ones does not exceed 5 %. 

Similarly, Table 2 cites thermal conductivities of the Ne-Ar-Kr mixture with B1 = 1.606, B 2 = 2.225. 

Experimental data are also taken from [8 ]. As in the previous case, the deviation does not exceed 5%. Moreover, 
both tables list the thermal conductivities and relative errors produced by calculations of B1 and B2 in which one 

experimental value of thermal conductivity is used for the ternary mixture and one value is used for the binary 

mixture and, finally, only two values of thermal conductivity are used for binary mixtures. It is noteworthy that B 

may be formally determined, as follows from (8), at y = 0, i.e., using data for a binary mixture not containing gas 

B. Analogously, the parameter B may be determined independently from data for another mixture (B, C). The 

discrepancy between the experimental and predicted data is at its maximum in the case where two binary mixtures 

are employed, but, nevertheless, it is always lower that 10% (see the tables). 
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TABLE 1. Comparison of Calculated and Experimental Thermal Conductivities (2.103 W / ( m .  K)) of the He-Ar-Xe 

(A-B-C) Ternary Mixture 

Mixture composition, % 

A 

9.67 

39.01 

32.02 

B 

18.00 

36.75 

60.65 

C 

62.33 

24.24 

7.33 

"~exp 

16.76 

35.36 

35.28 

1 calc 

16.42 

33.84 

33.68 

51,% 

-2.03 

-4.30 

-4.53 

)~2cal c 

18.67 

36.56 

34.45 

52, Yo 

11.40 

3.39 

-2.35 

23calc 

18.68 

37.42 

35.66 

53,% 

11.46 

5.83 

1.08 

TABLE 2. Comparison of Calculated and Experimental Thermal Conductivities of the Ne-Ar-Kr ( A - B - C )  Ternary 

Gaseous Mixture 

Mixture composition, 

A 

18.61 

30.19 

45.37 

59.84 

79.19 

B 

14.49 

38.48 

15.67 

13.01 

15.69 

C 

66.90 

31.33 

38.96 

27.15 

71.52 

/exp 

14.52 

20.09 

22.81 

27.54 

13,92 

~, 1 calc 

14.93 

19..65 

21.58 

26.22 

13.92 

51,% 

2.82 

-2.19 

-5.4 

-4.79 

-2.65 

J'2calc 

13.99 

19.35 

29.91 

25.99 

12.98 

6z, % 

-3.65 

-3.7 

-8.3 

-5 .6  

-4 .2  

23calc 

13.81 

19.03 

20.46 

25.41 

12.86 

6a,% 

-4 .9  

-5.3 

-10.3 

-7 .7  

-5 .2  

We now consider the dependence of the parameters B 1 and B 2 in (8) on the temperature. The dependence 

of the thermal conductivity of a pure gas on the temperature T may be represented as [1, 9, 10] 

2 i - T Yi, (9) 

where Yi = 0 .5  + a i, a i << 0.5. Hence it follows that the function/72 determined from experimental data at a single 

temperature T o is valid in a rather wide temperature range since the arguments are only ratios of pure transfer 

coefficients. Proceeding from (9), we may say that the width of this range AT is proportional to the absolute 

temperature To at which F2 is determined. Indeed, the ratio of thermal conductivities of pure components may be 

represented as 

'~1 (T)/J'3 (T) - ~'1 (To) { 1 + (a 1 - a3) ( T  - T o ) / T  0 }/~3 (To)" (10) 

When AT = T - T O is such that 

(a I - a 3 )  AT/T o <  1 ,  

the function F 2 may be considered as independent of temperature. In the solid sphere approximation widely used 

in the kinetic theory of gases [1, 9 ], a i = O. 

Results and Discussion. The Pad~ approximant method allows concentration dependences of transfer 

coefficients to be described by simple and rather accurate formulas (8), as it has been demonstrated for two 

mixtures on the example of the thermal conductivity of a ternary mixture. It is important that the coefficients B 1 
and B2 determined from experimental data at the specified temperature T O are almost the same in the wide 

temperature range 

A T ~ T o  < 0.3 - 0.4. 

It is also significant that the choice of the states of the ternary mixture in which the coefficients BI and B2 

are determined exerts only a slight influence on the accuracy of calculations. This probably depends on the 

fulfillment of conditions (4)-(6) and the Pad~ approximant properties [7 ]. Of interest is one more circumstance. 
For instance, for a gas mixture (A, B, C) the properties of the transfer coefficient of the binary mixtures (A, B) 
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and (B, C) are often known [5, 11 ]. As our calculations have shown, when experimental data on just binary 

mixtures are employed, for determination of BI and B2 in (8), we obtain a rather accurate calculation formula valid 

in a wide temperature range, though the accuracy attained is lower than that of calculations using thermal 

conductivity of the ternary mixture itself. When a single experimental value is available for a ternary mixture, then 

choosing, as a second experimental point, known data on one of the binary mixtures (A, B) or (C, B), we may 

attain almost the same accuracy as in the case of using data on just the ternary mixture. This circumstance makes 

the suggested approach especially valuable in practice since a sufficiently large body of data on binary mixtures is 

available by now. 
Using the similarity to the viscosity coefficient shown in the kinetic theory of gases [1 ], we may employ 

our approach with confidence to describe the concentration dependence of viscosity coefficients of ternary gaseous 

mixtures. 

N O T A T I O N  

2, thermal conductivity of the ternary mixture; TO, temperature of the mixture whose experimental data 

are used to determine the parameters in the Pad~ approximant; 2i, thermal conductivity of the mixture component 

at the temperature TO; 2ex p and 2calc, experimental and calculated thermal conductivity of the ternary mixture, 

respectively; 61 = (2calc-2exp)/2exp, relative error of the calculation using two experimental thermal conductivities; 
62, relative error of the calculation based on one experimental value for the ternary mixture and one value for the 

binary mixture; 63, relative error of the calculation based on two thermal conductivity values of the binary mixtures 

composed of the gases forming the ternary mixture. 
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